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SUMMARY

Conventional methods for single-cell genome se-
quencing are limited with respect to uniformity and
throughput. Here, we describe sci-L3, a single-cell
sequencing method that combines combinatorial in-
dexing (sci-) and linear (L) amplification. The sci-L3
method adopts a 3-level (3) indexing scheme that
minimizes amplification biases while enabling expo-
nential gains in throughput. We demonstrate the
generalizability of sci-L3 with proof-of-concept dem-
onstrations of single-cell whole-genome sequencing
(sci-L3-WGS), targeted sequencing (sci-L3-target-
seq), and a co-assay of the genome and transcrip-
tome (sci-L3-RNA/DNA). We apply sci-L3-WGS to
profile the genomes of >10,000 sperm and sperm
precursors from F1 hybrid mice, mapping 86,786
crossovers and characterizing rare chromosome
mis-segregation events in meiosis, including in-
stances of whole-genome equational chromosome
segregation. We anticipate that sci-L3 assays can
be applied to fully characterize recombination land-
scapes, to couple CRISPR perturbations and mea-
surements of genome stability, and to other goals
requiring high-throughput, high-coverage single-cell
sequencing.

INTRODUCTION

Most contemporary single-cell genome-sequencing methods

rely on compartmentalization of individual cells, which limits

throughput, and/or PCR amplification, which skews uniformity.

To address the former, we and colleagues developed single-

cell combinatorial indexing (sci-), wherein one performs several
676 Molecular Cell 76, 676–690, November 21, 2019 ª 2019 Elsevier
rounds of split-pool barcoding to uniquely index the nucleic

acid contents of single cells, enabling exponential gains

in throughput with each successive round of indexing. Sci-

methods have been successfully developed to profile chromatin

accessibility, transcriptomes, genomes, methylomes, and chro-

mosome conformation in large numbers of single cells (Cao

et al., 2017; Cusanovich et al., 2015; Mulqueen et al., 2018; Ram-

ani et al., 2017; Vitak et al., 2017). To address the latter, linear

amplification represents an alternative toPCR that haspreviously

been used in single-cell assays (Eberwine et al., 1992; Hashimsh-

ony et al., 2012; Sos et al., 2016). For example, linear amplifica-

tion via transposon insertion (LIANTI) uses the Tn5 transposon

to fragment the genome and simultaneously insert a T7 RNA pro-

moter for in vitro transcription (IVT) (Chenet al., 2017). Byavoiding

exponential amplification, LIANTI maintains uniformity and mini-

mizes sequence errors. However, it remains low-throughput,

requiring serial library preparation from each cell.

To address both limitations at once, we developed sci-L3,

which integrates sci- and linear amplification. With three rounds

of indexing, sci-L3 improves the throughput of LIANTI to at least

thousands and potentially millions of cells per experiment, while

retaining the advantages of linear amplification. We demonstrate

the generalizability of sci-L3 by establishing methods for single-

cell whole-genome sequencing (sci-L3-WGS), targeted genome

sequencing (sci-L3-target-seq), and a co-assay of the genome

and transcriptome (sci-L3-RNA/DNA). As a further demonstra-

tion, we apply sci-L3-WGS to map an unprecedented number

of meiotic crossover and rare chromosome mis-segregation

events in premature and mature male germ cells from both infer-

tile, interspecific (B6 3 Spretus) and fertile, intraspecific (B6 3

Cast) F1 male mice.
DESIGN

The sci-L3 strategy has major advantages over current alterna-

tives and any simple combination of sci- and LIANTI. First, its
Inc.
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potential throughput is >1 million cells per experiment at a low li-

brary preparation cost (Cao et al., 2019). Second, the unidirec-

tional nature of the barcode structure of sci-L3 facilitates either

whole-genome or targeted sequencing of single cells. Third, as

a generalizable scheme for high-throughput cellular indexing

coupled to linear amplification, sci-L3 can be adapted to addi-

tional goals with small modifications, as demonstrated here by

our proof-of-concept of a single-cell RNA/DNA co-assay.

RESULTS

Proof-of-Concept of Sci-L3-WGSandSci-L3-Target-Seq
The three-level combinatorial indexing and amplification

schemes of sci-L3-WGS and sci-L3-target-seq are shown in Fig-

ure 1A: (1) Cells are fixed with formaldehyde and nucleosomes

are depleted by SDS (Vitak et al., 2017); nuclei are distributed

to a first round of wells. (2) A first round of barcodes is added

by indexed Tn5 ‘‘tagmentation’’ within each well. A spacer

sequence is included 50 to the barcodes as a ‘‘landing pad’’

for the subsequent ligation step (Figure 2; STAR Methods,

‘‘Methods and Molecular Design of Sci-L3-WGS and Sci-L3-

Target-Seq’’). (3) All nuclei are pooled and redistributed to a

second round of wells; a second round of barcodes is added

by ligation, together with a T7 promoter positioned outside both

barcodes. (4) All nuclei are pooled and flow sorted to a final round

of wells. Nuclei of different ploidies can be gated and enriched by

DAPI staining. Also, simple dilution is an alternative to fluores-

cence-activated cell sorting (FACS), which can reduce loss. (5)

Sorted nuclei are lysed and subjected to gap extension to form

a duplex T7 promoter. This is followed by IVT, reverse transcrip-

tion (RT), and second-strand synthesis (SSS). A third round of

barcodes is addedduringSSS, alongwith uniquemolecular iden-

tifiers (UMIs) to tag individual IVT transcripts. (6) DuplexDNAmol-

ecules (Figure 1B, top), each containing three barcodes that

define their cell of origin, are compatible with conventional library

preparation for sci-L3-WGS (e.g., appending sequence adaptors

by ligation [Figure 1B, center] or tagmentation) or slightly modi-

fied methods for sci-L3-target-seq (e.g., adding a PCR step

with one target-specific primer [Figure 1B, bottom]).

As a proof-of-concept, we mixed mouse and human cells and

performed sci-L3-WGS. For >95%of the resulting single-cell ge-

nomes, the vast majority of reads mapped either to the mouse or

human genome (Figure 1C). The performance of sci-L3-WGS is

compared to both LIANTI and our previous PCR-based sci-

DNA-seq method (Vitak et al., 2017) in Table 1. The advantages

of sci-L3-WGS include (1) we generally recover 90% of sorted

cells as compared to 60% recovery with sci-DNA-seq. (2) With

40% fewer raw reads (329 million by sci-L3-WGS versus

549 million by sci-DNA-seq), sci-L3-WGS produced coverage

at �97,000 unique Tn5 insertions per cell, as compared to

�30,000 with sci-DNA-seq, a >3-fold improvement. Sequencing

fewer cells to a higher depth, we observed�660,000 unique Tn5

insertions per cell while maintaining higher library complexity,

suggesting a further improvement of >20-fold. (3) The rate of

mappable reads is improved from 61% with LIANTI to 86%

with sci-L3-WGS. This is likely because LIANTI is entirely in-

tube, making it hard to remove artifacts (e.g., secondary to

self-insertion of Tn5), whereas with sci-L3-WGS, nuclei are pel-
leted several times to remove excess free DNA. (4) Unlike

PCR-basedmethodswherein duplicate reads contain correlated

errors, the ‘‘duplicate’’ reads of sci-L3-WGS almost always

correspond to independent transcripts of the original template

and are therefore useful for variant calling.

With sci-L3-WGS, Tn5 inserts on average every 0.5–1.5 kb of

the human genome, and IVT yields �1,000 transcripts. This cor-

responds to 2–6 million unique Tn5 insertions, and therefore 2–6

billion unique IVT transcripts per cell. It is obviously impractical to

sequence these libraries to saturation. Here, we define depth as

the ratio of unique transcripts sequenced to unique Tn5 inser-

tions mapped. In this study, most libraries are sequenced at a

depth of 1–2 times, resulting in 0.5%–5% coverage of the

genome of each cell. The distribution of unique Tn5 insertions

per cell in the human and mouse mixture experiment is shown

in Figure 1D and for other experiments in Figure S1. The esti-

mated relative chromosomal copy numbers for representative

single cells is shown in Figure 1E and their distributions across

all cells in Figure 1F. To extrapolate expected coverage per

cell at higher depths, we fit the number of unique insertions as

a function of depth (Figure S1G). We expect to observe 4.2

and 6.0 million unique insertions per cell at a depth of 5 and

10 times, respectively, which corresponds to 16% and 22%

coverage of the genomes of individual cells.

For sci-L3-target-seq, after second strand synthesis, we

added sequencing adaptors by PCR with one primer bearing

the third barcode, but the other primer targeting a specific

genomic region (Figure 1B, bottom). To quantify the efficiency

of sci-L3-target-seq, we integrated a lentiviral CRISPR library

at a low MOI (STAR Methods, ‘‘Methods and Molecular Design

of Sci-L3-WGS and Sci-L3-Target-Seq’’) and recovered the

DNA sequences corresponding to single guide RNA (sgRNA)

spacers by sci-L3-target-seq. For 97 of 1,003 single cells, we

successfully recovered a single integrated sgRNA. This �10%

efficiency per haplotype is broadly consistent with the observed

genome coverage of 22% with sci-L3-WGS (Figure S1G).

Note that at the molecular level, we have modified the sci- and

LIANTI methods in several ways. Briefly, we (1) changed the

design of the Tn5 transposon to be compatible with ligation,

enabling a third round of indexing; (2) added a loop structure

bearing the T7 promoter to facilitate intramolecular ligation,

and (3) changed the RT scheme to only require successful liga-

tion at one of the two ends of the first-round barcoded mole-

cules. Supposing that a single ligation event has 50% efficiency,

this modification renders a 75% success rate at the ligation step

instead of 25% (Figure S1). We depict the structures of the mol-

ecules after each barcoding step in Figure 2 and discuss ratio-

nales, scalability, and costs for these designs in STAR Methods,

‘‘Methods and Molecular Design of Sci-L3-WGS and Sci-L3-

Target-Seq’’ and Table S1. For libraries of 1,000, 10,000, and 1

million single cells, we estimate the cost of sci-L3-WGS to be

1.5%, 0.26%, and 0.014% of LIANTI. The use of 3, rather than

2, levels of combinatorial indexing can be leveraged either to in-

crease throughput (e.g., the cost of constructing libraries for

1 million cells at a 5% collision rate with 3-level sci-L3-WGS is

�$8,000) or to reduce the collision rate (e.g., the cost of

constructing libraries for 10,000 cells at a 1% collision rate

with 3-level sci-L3-WGS is �$1,500).
Molecular Cell 76, 676–690, November 21, 2019 677



Figure 1. Sci-L3-WGS Enables High-Throughput Single-Cell Sequencing with Linear Amplification

(A) Sci-L3-WGS workflow.

(B) Top: barcode structure of resulting DNA duplexes. bc, barcode; sp, spacer; gDNA, genomic DNA. Center: example library structure for sci-L3-WGS. P5 and

P7 sequencing adaptors are added by A-tailing and ligation. Note that having P7 on the UMI end and P5 on the gDNA end are equally possible due to symmetry of

ligation. Bottom: example library structure for sci-L3-target-seq. P5 and P7 sequencing adaptors are added by priming from spacer 2 (sp2) and targeted loci of

interest in the genome, respectively. Note that a new third round of barcode bc30 is also added by PCR corresponding to each bc3 in the WGS library, and new

UMIs are added outside bc30.
(C) Scatterplot of numbers of unique Tn5 insertions from human and mouse cells at low sequencing depth, 24 bc13 64 bc23 6 bc3 sci-L3-WGS, 100–300 cells

sorted per well. Blue, inferred mouse cells (percentage of mouse reads >95%; median 98.7%; n = 315); red, inferred human cells (percentage of human reads

>95%; median 99.8%; n = 719); gray, inferred collisions (n = 48; 4% of cells). ‘‘Contaminating’’ reads arise randomly throughout the genome (see Figure S1H).

(D) Boxplots showing number of unique Tn5 insertions per cell at mean 2.4 million raw reads per cell and 1.78 times depth. Depth defined as ratio of unique IVT

transcripts to unique Tn5 insertions. Thick horizontal lines, medians; upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the

interquartile range; circles, outliers). See Figure S1 and STAR Methods, ‘‘Methods and Molecular Design of Sci-L3-WGS and Sci-L3-Target-Seq’’ for charac-

terization of the libraries made with improved versions of the protocol.

(E) Example chromosome CNV plots for individual cells. Top, HEK293T cell, 2.6 million raw reads, 2.4 million unique molecules, 1.3 million unique Tn5 insertions

with MAPQ >1. Bottom, 3T3 cell, 2.7 million raw reads, 2.4 million unique molecules, 1.2 million unique Tn5 insertions with MAPQ >1.

(F) Boxplots for copy number variation across 822 293T cells or 1,453 HAP1 cells. The y axis depicts reads fraction per chromosome normalized by chromosome

length such that a euploid chromosome without segmental copy gain or loss is expected to have a value of 1.

678 Molecular Cell 76, 676–690, November 21, 2019
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Figure 2. Molecular Structures for Sci-LIANTI at Each Step

(A) Tn5 adaptors have both 50 ends phosphorylated, one required for insertion and the other for ligation. The overhang of the annealed transposon contains first

round barcodes (bc1) and a spacer (sp1) for ligation.

(B) The ligationmolecule is pre-annealed as a hairpin loop, which reduces intermolecular ligation from threemolecules to twomolecules; the hairpin structure also

helps improve RT efficiency in downstream steps. The hairpin contains (1) an overhang that anneals with sp1 for ligation, (2) the second round barcodes (bc2) and

a spacer (sp2) that serves as a priming site in the stem for SSS in downstream steps, and (3) a T7 promoter in the loop for IVT.

(C) Gap extension converts the looped T7 promoter to a duplex. Note that if ligation is successful on both ends, then T7 promoters are present on both sides;

however, if ligation is successful on one end, then the boxed portion will be missing. Nevertheless, both can be reverse transcribed in downstream steps with

different RT primers.

(D) IVT generates single-stranded RNA amplicons downstream of the T7 promoter.

(E) If ligation is successful on both ends, then RT is preferably primed by self-looped RT primers, which are inherited from the looped ligation molecule; if ligation is

successful on only one end, then RT is primed by additional RNA RT primers added in excess. Excess RNA primers are then removed before SSS to avoid

interfering with SSS reaction.

(F) Double-stranded DNA molecules are produced by SSS, which primes off sp2 to simultaneously add the third barcode and to UMI tag each transcript.

Dashed line: RNA, solid line: DNA. For more details, see STAR Methods, ‘‘Methods and Design of Sci-L3-WGS and Sci-L3-Target-Seq.’’
Development of a Scalable Single-Cell RNA/DNA
Co-assay
We realized that sci-L3 could be further adapted to other nu-

cleic acid targets with small modifications. To illustrate this,

we developed a sci-L3-RNA/DNA co-assay. In brief, the first

round of DNA barcoding is performed by Tn5 insertion as in

sci-L3-WGS, but we concurrently perform a first round of

RNA barcoding, tagging mRNAs via RT with a barcode and

UMI-bearing polyT primer (Figure 3A). Both the Tn5 insertion

and RT primer bear overhangs that mediate the ligation of

the second round of barcodes and a T7 promoter, effectively

enabling three-level indexing and subsequent IVT-based linear

amplification in a manner largely identical to sci-L3-WGS (Fig-

ures 3A and 3B; STAR Methods ‘‘Methods and Molecular
Design of Sci-L3-RNA/DNA Co-assay’’). As a proof-of-

concept, we mixed mouse cells with cells from two human

cell lines and performed the sci-L3-RNA/DNA co-assay. For

the vast majority of cells, reads mapped either to the mouse

or human genome, both for RNA (5.2% collision rate) and

DNA (6.6% collision rate) (Figures 3C and 3D). Furthermore,

consistent with a successful co-assay, 100% of cells were

assigned the same species label by their RNA and DNA pro-

files. As a further check, we performed t-Distributed Stochastic

Neighbor Embedding (t-SNE) based on their RNA profiles, re-

sulting in two clusters. Labeling each cell by the presence or

absence of a Y chromosome in the DNA profiles coherently

identified BJ (male) versus HEK293T cells (female) (Figure 3E)

with 96.5% accuracy.
Molecular Cell 76, 676–690, November 21, 2019 679
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Single-Cell DNA Profiling of Mouse Germ Cells with
Sci-L3-WGS
In normal mitotic cell divisions, diploid chromosomes undergo

replication to generate four copies of DNA, and sister chromatids

segregate apart into reciprocal daughter cells. Daughter cells

receive one copy of each maternally and paternally inherited

DNA sequence and almost always maintain heterozygosity at

the centromere-proximal sequences (Figure S2A). Rarely, chro-

mosomes undergo mitotic crossover between chromosome

homologs, which can sometimes result in diploid cells with

loss-of-heterozygosity (LOH) at sequences centromere distal

to the crossover if the two recombined chromatids segregate

into different daughter cells (Figures S2B and S2C).

In meiosis, sister chromatids first co-segregate into the same

daughter cell, and homologs segregate into reciprocal daughter

cells in the meiosis I (MI) stage, also known as reductional segre-

gation, resulting in 2C cells (DNA content of an unreplicated

diploid cell) with LOH at the centromere proximal sequences

(Figures S2D and S2E). For successful reductional segregation

of chromosomes in MI (Figure S2D), crossovers initiated by

Spo11-catalyzed double-strand breaks (DSBs) (Baudat et al.,

2000; Keeney et al., 1997; Romanienko and Camerini-Otero,

2000) provide the link and necessary tension (Hong et al.,

2013) between chromosome homologs. Rarely, chromosomes

will segregate in a meiotic fashion without any inter-homolog

crossover, resulting in uniparental disomy (UPD). After MI, these

2C cells undergo mitosis-like chromosome segregation in

meiosis II (MII), also called equational segregation, such that sis-

ter chromatids segregate apart to form 1C gametes (Figure S2E).

Belowwe refer tomeiotic or reductional segregation duringMI, in

which sister chromatids segregate together, as reductional

segregation, and mitosis-like or equational segregation during

MI, in which sister chromatids segregate apart, as equational

segregation.

To date, most work on the relation between crossover position

and chromosome segregation has been performed by imaging

(Wang et al., 2017a, 2017b), which fails to fully characterize the

underlying genomic sequences that are prone to meiotic cross-

over. Several assays enable detailed mapping of meiotic DSB

hotspots (Lange et al., 2016; Smagulova et al., 2011, 2016),

but these assays do not directly mapmeiotic crossovers. Assays

that do dissect crossover versus noncrossover at a fine scale are

restricted to a few hotspots (Cole et al., 2014). Consequently, we

know much less about the relation between crossovers and

chromosome-scale features such as replication domains than

we do about meiotic DSB hotspots (Baudat et al., 2013; Choi

and Henderson, 2015; Yamada et al., 2017). Genome-wide

meiotic crossover maps have been generated by mapping tet-

rads in yeast (Mancera et al., 2008; Zhang et al., 2017), single hu-

man sperm, and complete human female meioses (Hou et al.,

2013; Lu et al., 2012; Ottolini et al., 2015; Wang et al., 2012).

With the exception of the studies of human female meiosis,

which analyzed 87 complete meioses, most crossover maps

are limited in at least three respects: (1) mature 1C gametes

are analyzed in which the cells have completed both rounds of

meiotic division, which prevents direct observation of the more

informative intermediate 2C cells to evaluate whether and how

often chromosomes undergo reductional versus equational



Figure 3. Sci-L3-Based RNA/DNA Co-assay Enables Scalable Joint Profiling of Single-Cell Genomes and Transcriptomes

(A) Schematic of sci-L3-RNA/DNA co-assay. Note that both Tn5 transposon and cDNA synthesis primer contain the same phosphorylated ligation landing pad

(pink) at 50 overhang outside the first round barcodes.

(B) Barcode structures of resulting amplified duplexes corresponding to genome (left) and transcriptome (right).

(C) Scatterplot of numbers of unique Tn5 insertions from human and mouse cells at low and high sequencing depth plotted together. Blue, inferred mouse cells

(percentage of mouse reads >95%, median of 99.5%; n = 2002); red, inferred human cells (percentage of human reads >95%; median of 99.8%; n = 2,419); gray,

inferred collisions (n = 149; 6.6%).

(D) Same as in (C) for RNA. Blue, inferred mouse cells (median purity 95.1%); red, inferred human cells (median purity 91.5%); gray, inferred collisions

(n = 272; 12%).

(E) t-SNE based on RNA profiles results in two clusters corresponding to BJ (male) and HEK293T (female) cells. Colors based on the presence or absence of

Y chromosomes in DNA profiles.
segregation duringMI (Figure S2); (2) abnormal cells are selected

against due to their failure to proceed to the mature gametic

state; and (3) analyses by single sperm or oocyte sequencing

are limited in throughput and to a few hundred cells at the

most, and as such could miss out on rare events. Even for fertile

crosses, the number of offspring that can be reasonably gener-

ated and genotyped is quite limited (Liu et al., 2014).

To address all of these limitations, we applied sci-L3-WGS to

infertile offspring of an interspecific cross (femaleMus musculus

domesticus C57BL/6 [B6] x maleMus spretus SPRET/Ei [Spret])

and fertile offspring of an intraspecific hybrid (female B6 3 male

Mus musculus castaneous CAST/Ei [Cast]). By sequencing

spermwith a scalable technology, we are able tomap an unprec-

edented number of crossover events for amammalian system, in

both infertile and fertile hybrids. Also, as this scale also enables

us to recover profiles from rare 2C secondary spermatocytes, we

can assess crossover and chromosome mis-segregation simul-

taneously from the same single cells.
Unlike inbred males and (B6 3 Cast) F1 males, the epididy-

mides of (B6 3 Spret) F1 males (Berletch et al., 2015) contain

extremely few morphologically mature sperm and limited

numbers of round germ cells of unknown ploidy (Figures S3A

and S3B). We observed amuch higher fraction of 2C cells during

FACS (Figures S3C and S3D; Table S2) than would be expected

for a ‘‘normal’’ epididymis, which is dominated by 1C sperm. In

contrast and as expected, the epididymides of (B6 3 Cast) F1

males contained almost entirely 1C sperm (Figure S3E). For

this cross, we therefore sorted 1C and 2C cells from dissociated

testes (Figure S3F).

For cells from F1 males from both the (B6 3 Spret) and (B6 3

Cast) crosses, we performed sci-L3-WGS (details in STAR

Methods, ‘‘Setup of Sci-L3-WGS Experiment in Two Crosses’’).

Although 1C and 2C cells can be distinguished informatically,

their relative abundance still affects our analysis. Specifically,

in the (B6 3 Spret) cross, 1C cells are so rare that any doublets

(e.g., two 1C cells stuck together or that incidentally receive the
Molecular Cell 76, 676–690, November 21, 2019 681
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same barcodes) do not substantially contribute to the 2C popu-

lation. In contrast, in the (B6 3 Cast) cross, the majority of cells

are 1C despite enrichment (�85%; Figure S3G), such that there

may be many 1C doublets that mimic 2C cells. We discuss how

to informatically distinguish 1C doublets from bonafide 2C cells

further below.

M2 Cells Exhibit Clustered Reductional or Equational
Chromosome Segregation
Chromosome Segregation in M2 Cells from the Infertile

(B6 3 Spret) Cross

We first sought to analyze meiosis in cells from the epididymides

of infertile (B63 Spret) F1 males. Across 2 experiments, we pro-

filed the genomes of 2,689 (92% of 2,919 sorted cells with

>10,000 raw reads) and 4,239 (94% of 4,497 sorted cells with

>30,000 raw reads) single cells (Figure S1F). At a depth of 1.6

and 1.4 times for the 2 libraries, we obtained a median of

�70,000 and �144,000 unique Tn5 sites per cell, corresponding

to 0.7% and 1.4% median genome coverage, respectively.

To identify crossover breakpoints, we implemented a hidden

Markov model (HMM) that relied on high-quality reads that could

clearly be assigned to B6 versus Spret (see STAR Methods,

‘‘Bioinformatic and Statistical Analyses’’; Tables S3 and S4).

We characterized crossovers in 1,663 1C cells (Figure 4A).

Although the �5,200 2C cells were expected to be overwhelm-

ingly somatic, to our surprise, we identified 292 with a significant

number of crossovers, which we called M2 cells (Figures 4B and

4C). Even more surprising, a substantial proportion of these ex-

hibited equational, rather than reductional, segregation.

After an inter-homolog crossover occurs, if the chromosome

segregates in a reductional fashion, then the region between

the centromere and the position of crossover will become homo-

zygous, whereas heterozygosity will be maintained downstream

of the crossover (Figure S2D). However, if the chromosome

segregates in an equational fashion, then LOH is observed

centromere distal to the crossover if the recombined chromatids

segregate apart (Figure S2B). An example of an M2 cell exhibit-

ing the expected reductional segregation is shown in Figure 4B

(note homozygosity between centromere and point of cross-

over), and an example of an M2 cell exhibiting the unexpected

equational segregation is shown in Figure 4C (note consistent

heterozygosity between centromere and point of crossover).
Figure 4. Sci-L3-WGS of Interspecific Hybrid Mouse Male Germline Re

tion in MI

(A) Example crossover plot for 1C cell. The gray dot has a value of 1 for the Spre

(B) Example LOH plot for M2 cell with reductional segregation (see also Figure S

(C) Example LOH plot for M2 cell with equational segregation (see also Figure S

(D–F) Number of reductionally (red, pink, black) and equationally (blue, green) se

(19 chromosomes per cell, distributed as indicated by colors).

(D) Expected distribution of reductional versus equational segregation based on

(E) Observed data in M2 cells. In rare cases (27/5,548 chromosomes), we were n

SNP coverage (white space at the top of the panel). The black bar depicts MI nond

the chromatids. Note that NDJ is considered to be reductional segregation beca

(F) Same as (E), but further broken down by the number of chromosomes with or

equationally segregated chromosomes (light green and blue, in descending orde

without crossover (blue, in descending order).

In (A)–(C), the red line depicts fitted crossover transition via HMM. The centromere

shows the allele frequency of Spret averaging 40 SNPs.
Within any given M2 cell, are the segregation patterns of indi-

vidual chromosomes independent? If that were the case, across

cells, then we would expect a binomial distribution of reduction-

ally versus equationally segregated chromosomes, centered on

the maximum likelihood estimate (MLE) of the probability, p, of

reductional segregation (p = 0.76 from the data, 4,162/5,472;

Figure 4D). However, of the 292 profiled M2 cells, we observe

202 cells with R15 reductionally segregated chromosomes

(148 expected), and 38 cells with R15 equationally segregated

chromosomes (0 expected) (Figure 4E; p = 4e�23, Fisher’s exact

test). This non-independence suggests the possibility of a cell-

autonomous global sensing mechanism for deciding whether a

cell proceeds with meiosis or returns to mitosis.

We can further classify cells by whether chromosomes in M2

cells have a crossover (Figure 4F). Reductionally segregated

chromosomes appear to have more crossovers (pink in Fig-

ure 4F) than equationally segregated chromosomes (green in

Figure 4F). Across the 292 M2 cells, we observed 4,162 exam-

ples of reductional segregation (90% with crossovers) and

1,310 examples of equational segregation (49% with cross-

overs). However, unlike in reductionally segregated chromo-

somes in which we can detect all of the crossovers as

centromeric LOH, equationally segregated chromosomes have

LOH only if the two recombined chromatids segregate apart

into reciprocal daughter cells (Figure S2B). If instead recombined

chromatids co-segregate, heterozygosity will be maintained

throughout the chromosome, despite the undetectable linkage

switch (Figure S2C). In Figure 4F, the ratio of having (shown in

green) versus not having (shown in blue) an observable LOH in

equationally segregated chromosomes is roughly 1:1. This could

either mean that equationally segregated chromosomes have a

50% chance of segregating recombined chromatids together,

if those completely heterozygous chromosomes (shown in

blue) do have a linkage switch, or alternatively that equationally

segregated chromosomes always segregate recombined chro-

matids apart, and the crossover frequency is reduced by half

compared to reductionally segregated chromosomes.

Segmental or whole-chromosome LOH are known to be rare in

mammalianmitotic cells. Nevertheless, to rule out amitotic origin

of such events, we examined such events in the Patski cell line,

which is a spontaneously immortalized cell line derived from the

female (B6 3 Spret) F1 mouse. We analyzed 1,107 single cells
veals Numerous Examples of Non-independent Equational Segrega-

t allele and 0 for the B6 allele.

2D): LOH centromere proximal to the crossover.

2B): LOH centromere distal to the crossover, unlike in (B).

gregated chromosomes for each M2 cell. Each column represents 1 M2 cell

binomial distribution, with p = 0.76 for reductional segregation.

ot able to distinguish reductional versus equational segregation due to sparse

isjunction (NDJ, 40 chromosomes in total), where we observed 0 or 4 copies of

use the sister chromatids segregate together.

without crossovers (abbreviated ‘‘CO’’). Cells are sorted first by the number of

r) and then by the number of observed equationally segregated chromosomes

is located at left for a picture of each chromosome. In (B) and (C), the gray dot
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from Patski with sci-L3-WGS, among which we found an

average of 0.36 UPD chromosomes and 0.098 segmental LOH

events per cell (Table S3), a much reduced rate compared to

M2 cells. Because such events are not necessarily independent

(e.g., due to UPD during early passaging), the rate of indepen-

dent LOH events is likely even lower. The distribution of these

events is plotted in Figure S4M. The contrast between the low

rate of mitotic LOH (expected) and the relatively high rate of 2C

cells exhibiting equational segregation (unexpected) confirms

that the latter are unlikely to correspond to somatic cells.

Chromosome Segregation in M2 Cells from the Fertile

(B6 3 Cast) Cross

We wondered whether equational segregation also occurs dur-

ing MI in the fertile progeny of intraspecific (B63Cast) F1males.

As shown above, the epididymides from this cross consist

almost entirely of 1C mature sperm; we therefore enriched for

2C secondary spermatocytes from whole testes. We then per-

formed sci-L3-WGS on cells from both the epididymides and

testes.

In a first quality control (QC) experiment, we distributed 1C

round spermatids evenly and sorted only for 1C cells after two

rounds of barcoding. The doublets, identified by virtue of being

non-1C, allow us to quantify barcode collisions. Among 2,400

sorted cells (200/well), we recovered 2,127 (89%) with >7,000

reads per cell; 2,008 of these are 1Cs with meiotic crossovers,

indicating a barcode collision rate of 5.5%. At a sequencing

depth of 1.06 times, we obtained a median of �60,000 unique

Tn5 insertions per cell, corresponding to�0.6%median genome

coverage.

In a second experiment, we tagmented 1C round spermatids

from the testes (barcode group 1), 2C cells from the testes (bar-

code group 2; contaminated with large numbers of 1C sperma-

tids, as shown in Figure S3F), and 1C mature sperm from the

epididymis (barcode group 3; STAR Methods, ‘‘Setup of Sci-

L3-WGS Experiment in Two Crosses’’) in separate wells during

the first round of barcoding. The rationale for separating barcode

groups 1 and 2 was to test whether instances of whole-genome

equational segregation were an artifact consequent to doublets

(discussed further below). As a further enrichment, during the

FACS step of sci-L3-WGS, for a subset of wells, we specifically

gated for 2C cells (15.5% of all cells; Figure S3G). At a

sequencing depth of 1.09 times, we obtained a median of

�94,000 unique Tn5 insertions per cell, corresponding to

�0.9% median genome coverage.

In total, we recovered 3,539 1C and 1,477 non-1C cells from

this second experiment. More than 97% of the 1C cells derive

from barcode groups 1 (n = 1,853) and 2 (n = 1,598) rather

than 3 (n = 88), indicating that mature sperm from the epididymis

are not well recovered by sci-L3-WGS. This suggests that the

1C cells recovered from (B6 3 Spret) cross above are also

likely not from mature sperm but rather from round spermatids,

which is consistent with the low number of sperm with mature

morphology (Figure S3B).

The 1,477 non-1C cells derived from both barcode group 1

(n = 1,104; presumably doublets of 1C round spermatids) and

2 (n = 373; presumably a mixture of bona fide M2 cells and 1C

doublets). To identify a signature of 1C doublets, we examined

the profiles of non-1C cells from barcode group 1 (which was
684 Molecular Cell 76, 676–690, November 21, 2019
specifically pre-sorted for 1C content and unlikely to contain

bona fide M2 cells). The centromere-proximal SNPs of 1C cells

that have completed both rounds of meiotic divisions should

either be B6 or Cast derived. For 1C doublets, these regions

have an equal chance of appearing heterozygous or homozy-

gous. Therefore, within any given 1C doublet, the number of

chromosomes that appear to have segregated equationally,

as well as the number that appear to have segregated reduction-

ally, should follow a binomial distribution, with n = 19 and p = 0.5.

This is what we observe for 1C doublets from barcode group 1

(p = 0.53, chi-square test; Figures 5A and 5B). In fact, there

were only 11 1C doublet cells with at least 15 chromosomes

that appear to segregate in a consistent fashion, whether equa-

tionally or reductionally (Tables S2 and S6).

Non-1C cells from barcode group 2 exhibited a very different

distribution. Of 373 such cells, 258 are similar to the 1C doublets

of barcode group 1 in having similar numbers of chromosomes

with equational or reductional segregation patterns. The remain-

ing 115 cells are biased, with at least 15 chromosomes segre-

gating in a consistent fashion, whether equationally or reduction-

ally (Figures 5C–5E; 115/373 for barcode group 2 versus 11/

1,104 for barcode group 1; p = 3e�70, chi-square test; Table

S6), with some exhibiting completely equational (n = 6) or

completely reductional (n = 91) patterns.

Finite-MixtureModel for Fitting the Three Populations of
Non-1C Cells
To consider this more formally, we fit the data from each exper-

iment to a Bayesian finite mixture of three binomial distributions

(STARMethods, ‘‘Finite Mixture Model for Fitting the Three Pop-

ulations of Non-1C Cells’’; Figure S3). The non-1C cells from the

testes of intraspecific (B6 3 Cast) F1 males (barcode group 2)

are estimated to include subsets of cells segregating reduction-

ally (28%) versus equationally (2%), as well as likely 1C doublets

(69%) (Figure S3I). The proportions differ for M2 cells from the

interspecific (B6 3 Spret) F1 males, which are estimated to

include subsets of cells segregating reductionally (66%) versus

equationally (14%), as well as likely 1C doublets (20%) (Fig-

ure S3J). These analyses support the conclusion that the infertile

(B6 3 Spret) cross has a much higher proportion of cells biased

toward equational rather than reductional segregation.

Distribution of Meiotic Crossovers at the
Chromosomal Level
We next sought to investigate the genomic correlates of cross-

over events. We analyzed 1,663 1C cells harboring 19,601

crossover breakpoints and 240 M2 cells with 4,184 crossover

breakpoints from the (B6 3 Spret) cross, and 5,547 1C cells

harboring 60,755 crossover breakpoints and 115 M2 cells with

2,246 crossover breakpoints from the (B6 3 Cast) cross. To

our knowledge, this is an unprecedented dataset with respect

to the number of crossover events identified in association with

mammalian meiosis.

The high-throughput nature of sci-L3-WGS allowed us to

analyze large numbers of premature germ cells and identify the

rare cell population that has completed MI but not MII, and

thus to observe meiotic crossover and chromosome mis-

segregation events in the same cell. In comparing an infertile,
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Figure 5. Sci-L3-WGS of the Intraspecific

Hybrid Mouse Male Germline Also Reveals

Numerous Examples of Non-independent

Equational Segregation

(A and B) Number of reductionally and equationally

segregated chromosomes for artificial ‘‘2C’’ cells

from barcode group 1, which derive from doublets

of 2 random 1C cells. Same depiction as in Fig-

ure 4.

(A) Expected distribution of reductional versus

equational segregation based on the binomial

distribution and assuming the probability of equa-

tional segregation; p = 0.5.

(B) Observed data in 2C cells, which matches the

expected distribution shown in (A).

(C–E) Number of reductionally and equationally

segregated chromosomes for non-1C cells from

barcode group 2, which are a mixture of both arti-

ficial doublets of 2 random 1C nuclei and real 2C

secondary spermatocytes.

(C) All non-1C cells from barcode group 2.

(D) Non-1C cells with biased chromosome segre-

gation only (i.e., R15 chromosomes segregated

either equationally or reductionally). Black bar de-

picts Meiosis I NDJ (2 of 2,185 chromosomes).

(E) Same as (D), but further broken down by

the number of chromosomes with or without

crossovers.
interspecific (B6 3 Spret) hybrid with a fertile, intraspecific

(B6 3 Cast) hybrid at a chromosomal level, we observe the

following defects in MI: (1) the proportion of M2 cells that

have at least 1 crossover on all 19 autosomes is reduced from

�2/3 in (B6 3 Cast) to �1/2 in (B6 3 Spret); (2) the average

number of crossovers per M2 cell is lower in (B6 3 Spret), but

the average number of crossovers per 1C cell is higher; (3)

crossover interference is weaker in (B6 3 Spret), in which the

median distance between adjacent crossovers is reduced from

97 to 82 Mb; (4) in (B6 3 Spret) M2 cells, crossovers tend to

occur in the middle half of each chromosome arm, in contrast

to 1Cs of both crosses as well as (B6 3 Cast) M2 cells, where

they favor the most centromere distal quartile; (5) among

M2 cells with biased equational or reductional chromosome

segregation, (B6 3 Spret) exhibits a significantly higher propor-

tion (38/240) of whole-genome equational segregation than
Molecula
(B6 3 Cast) (6/115); and (6) among M2

cells, the average number of sporadic

equational segregations (also called

reverse segregations [Ottolini et al.,

2015]) is increased from 0.2 to 1.1. These

findings suggest mechanisms that could

contribute or reflect underlying factors

that contribute to the infertility of (B6 3

Spret) F1 males, including defects in

crossover formation and positioning,

compromised mechanisms for ensuring

at least one crossover per chromosome,

and an increase in both sporadic and

whole-genome equational segregation.

Details are presented in Figure S4 and
STARMethods, ‘‘Distribution of Meiotic Crossovers at the Chro-

mosomal Level.’’

Distribution of Meiotic Crossover Events in Relation to
the Landscape of the Genome
We next evaluated the distribution of crossovers at a finer scale

in three ways (details in STAR Methods, ‘‘Distribution of Meiotic

Crossover Events in Relation to Genomic Features’’). First, we

collapsed all of the crossover events to generate ‘‘hotness

maps’’ along each chromosome and compared these to meiotic

DSB maps (Brick et al., 2018; Smagulova et al., 2011, 2016;

Lange et al., 2016), using Bayesian model averaging (BMA) to

identify crossover-contributory features beyond Spo11 (Clyde

et al., 2011; Figures 6A and 6B). Many, but not all, of the resulting

features are consistent between the two crosses. For example,

the positional biases of crossover formation, which can greatly
r Cell 76, 676–690, November 21, 2019 685
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Figure 6. Meiotic Crossover Hotness and Explanatory Genomic Features

(A) Marginal inclusion probability (MIP) for features associated with crossover hotness by BMA. The x axis ranks models by posterior probability, where gray

boxes depict features not included in each model (vertical line, 20 top models are shown) and orange color scale depicts posterior probability of the models. The

combined dataset from both the (B6 3 Spret) and (B6 3 Cast) crosses is shown here. See Figure S5 for the two crosses analyzed separately.

(B) Log normal distribution of sizes for breakpoint resolution. Left: (B6 3 Spret), median of 150 kb. Right: (B6 3 Cast), median of 250 kb.

(C and D) Positions of the rightmost crossover of each chromosome.

(C) M2 cell. Crossovers in the (B63Cast) (left) cross prefer the centromere distal end of the chromosome, while crossovers in the (B63 Spret) cross (right) prefer

the center region of each chromosome arm. After accounting for inter-chromosome variability, we estimate that crossovers in the (B6 3 Spret) cross are on

average 5.5 Mb more centromere proximal. See Figure S7A, which is similar but for 1C cells.

(legend continued on next page)
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affect the amount of tension enforced between chromosome ho-

mologs and consequently segregation, appear to be different

(Figures 6C and 6D). Second, in both crosses, we found that

1C andM2 cells separated into 2 clusters upon principal-compo-

nent analysis (PCA) on 78 aggregate crossover-related genomic

features, suggesting cell-autonomous differences in terms of

breakpoint patterns. Third, we constructed a predictive model

of crossover locations and achieved an accuracy of 0.73 and

0.85 in distinguishing real crossover tracts from randomly

sampled genomic tracts, in (B6 3 Spret) and (B6 3 Cast)

crosses, respectively (Figures 6E and 6F).

DISCUSSION

Here, we describe sci-L3, a framework that combines three-level

single-cell combinatorial indexing and linear amplification. We

demonstrate a sci-L3-WGS, targeted DNA sequencing (sci-L3-

target-seq), and a genome and transcriptome co-assay (sci-

L3-RNA/DNA). With sci-L3-WGS, at least tens of thousands,

and potentially millions, of single-cell genomes can be pro-

cessed in a 2-day experiment, at a library construction cost of

$0.14 per cell for 10,000 cells and $0.008 per cell for 1 million

cells. The throughput of sci-L3-WGS is orders of magnitude

higher than alternative sci-L3-WGS methods based on linear

amplification, such as in-tube LIANTI (Chen et al., 2017). It

furthermore improves on the number of uniquemolecules recov-

ered from each single cell from the low thousands (Pellegrino

et al., 2018) or low tens of thousands (Vitak et al., 2017) to the

hundreds of thousands.

We applied sci-L3-WGS to study male mouse meiosis and

identified an unexpected population of M2 cells. The single-cell

nature of the data also allowed us to simultaneously characterize

meiotic crossover and chromosome mis-segregation. Equa-

tional segregation events have previously been observed in

complete analyses of human female meiosis (Ottolini et al.,

2015), and we observe similar events here in the context of

mouse male meiosis (i.e., equational segregation of one or

several chromosomes). Among the 292 M2 cells we analyzed

from the (B6 3 Spret) cross, individual cells were biased toward

equational or reductional chromosome segregation, suggesting

a global sensing mechanism for deciding whether a cell pro-

ceeds with meiosis or returns to mitotic segregation of its chro-

mosomes. Also, to our knowledge for the first time in mammalian

meiosis, we observed multiple instances of whole-genome

equational segregation duringMI, suggesting a cell-autonomous

rather than a chromosome-autonomous mode of equational

segregation. We identified such events in both crosses, albeit

more rarely in the fertile (B6 3 Cast) cross.

The high incidence of whole-genome equational segregation,

particularly in the interspecific (B6 3 Spret) cross, raises more
(D) Comparing 1C and M2 cells, (B6 3 Spret) cross. After accounting for inter-c

average 9.4 Mbmore centromere proximal than in 1Cs (left) in the (B63 Spret) cro

Figure S7B).

(E) Area under the curve (AUC) of 0.73 quantifies expected accuracy in predicting

tracts or an equal number of randomly sampled tracts. Left: all 76 features. Righ

(F) AUC of 0.85 quantifies expected accuracy in predicting if a region drawn from th

of randomly sampled tracts. Left: all 69 features. Right: a subset of 25 features f
questions than it answers. We depict the model and highlight

several unresolved questions in Figure S7. In normal MI,

centromere cohesion is maintained in reductional segregation

and sister chromatids centromere proximal to the crossover

do not split until MII (pattern 1 in Figure S7H). Equational segre-

gation in MI indicates premature centromeric cohesin separa-

tion (pattern 2 and/or 3 in Figure S7H). Previous work has

also shown that homolog pairing could be defective in these

F1 crosses due to erosions of PRDM9 binding sites (Davies

et al., 2016; Gregorova et al., 2018; Smagulova et al., 2016),

and the pairing problem is probably more severe in the inter-

specific cross. In STAR Methods, ‘‘Speculations on the Causes

and Consequences of Reverse Segregation,’’ we speculate on

(1) what may cause premature centromeric cohesin separation,

(2) whether one crossover is sufficient for proper reductional

segregation, and (3) what consequences equational segrega-

tion in MI may have.

One key difference from simply combining the high-

throughput single-cell combinatorial indexing (sci) scheme with

linear amplification via transposon insertion (LIANTI) in the

development of sci-L3 is that we introduced the T7 promoter

by ligation, which not only enables more than two rounds of

cell barcoding and further increased throughput at a much-

reduced cost but also provides the flexibility to generalize the

method to other single-cell assays with small tweaks of the

protocol. As a first example, we demonstrate that sci-L3-WGS

can be easily adapted to sci-L3-target-seq. Although single-

cell targeted sequencing has been reported with the 10X Geno-

mics platform, to our knowledge it is of RNA transcripts, rather

than of DNA loci. Although the current 10% recovery rate per

haplotype may not be ideal for targeted sequencing, it is

mitigated by the large number of cells that can be analyzed.

As a second example, we demonstrate that sci-L3-WGS can

also be adapted to a sci-L3-RNA/DNA co-assay. We anticipate

that it may be further possible to adapt sci-L3 to assay for trans-

posase-accessible chromatin using sequencing (ATAC-seq),

bisulfite-seq, and Hi-C for single-cell profiling of chromatin

accessibility, the methylome, and chromatin conformation,

respectively, which may have advantages over published sci-

methods (Cusanovich et al., 2015;Mulqueen et al., 2018; Ramani

et al., 2017) for these goals in terms of throughput and amplifica-

tion uniformity.

Limitations
Sci-L3 has limitations, including genome coverage projected

at 20% due to imperfect in situ nucleosome depletion, Tn5

insertion density, and ligation efficiency. In addition, the cost

of WGS of large numbers of single cells is still prohibitive.

Finally, while the scheme is largely generalizable to other sin-

gle-cell assays and organisms, different assays and cell types
hromosome variability, we estimate that crossovers in M2 cells (right) are on

ss. The same trend is observed to a lesser extent in the (B63 Cast) cross (see

if a region drawn from the mouse genome comes from (B63 Spret) crossover

t: a subset of 25 features from BMA with MIP >0.5.

emouse genome comes from (B63Cast) crossover tracts or an equal number

rom BMA with MIP >0.5.
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may require additional optimization of the upstream nuclei

preparation methods.

Conclusion
Sci-L3-WGS, sci-L3-target-seq, and the sci-L3-RNA/DNA co-

assay substantially expand the toolset and potential throughput

of single-cell sequencing. In this study, we furthermore show

how sci-L3-WGS can provide a systematic and quantitative

view of meiotic recombination and uncover rare whole-genome

chromosome mis-segregation events. We anticipate that sci-

L3 methods will be highly useful in other contexts in which sin-

gle-cell genome sequencing is proving transformative (e.g., for

studying rare inter-homolog mitotic crossovers, for dissecting

the genetic heterogeneity and evolution of cancers).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Micewere euthanized according to University ofWashington approved IACUCprotocols (Christine Disteche lab) usingCO2 gas for at

least 5 min of exposure, followed by a second method of euthanasia such as cervical dislocation in accordance with the Guiding

Principles for the Care and Use of Laboratory Animals.

METHOD DETAILS

Supplemental Results and Discussion
Finite mixture model for fitting the three populations of non-1C cells

The non-1C cells recovered from (B6 3 Cast) hybrid from barcode group 2 include 1C doublets, cells that appear biased toward

equational segregation, and cells that appear biased toward reductional segregation. To quantify their relative proportions, we fit

the data to a mixture of three binomial distributions, with probabilities of chromosomes segregating equationally of 0.01, 0.48 and

0.95, and mixing proportions of 0.28, 0.69 and 0.02 (Figure S3H). In contrast, when we attempt to similarly fit non-1C cells from bar-

code group 1 to a mixture of three binomial distributions, we obtain probabilities of chromosomes segregating equationally of 0.46,

0.5 and 0.53 (all close to 0.5), and mixing proportions of 0.24, 0.44 and 0.31 (Figure S3I).

Toward asking whether the proportion of M2 cells that are biased toward equational versus reductional segregation differs be-

tween the fertile and infertile crosses, we can similarly fit the chromosomal data from the (B63 Spret) cross (Figure 4E), which yields

probabilities of chromosomes segregating equationally of 0.05, 0.39 and 0.91, and mixing proportions of 0.66, 0.2 and 0.14 (Fig-

ure S3J). These proportions suggest that the infertile (B6 3 Spret) cross has higher proportion of cells that are biased toward equa-

tional rather than reductional segregation.

Distribution of meiotic crossovers at the chromosomal level

Basing on 1,663 1C cells harboring 19,601 crossover breakpoints and 240M2 cells with 4,184 crossover breakpoints from the (B63

Spret) cross, and 5,547 1C cells harboring 60,755 crossover breakpoints and 115M2 cells with 2,246 crossover breakpoints from the
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(B63Cast) cross, we first considered the distribution of meiotic crossovers across chromosomes. Crossover density is defined here

as the average number of crossovers per cell per division per Mb multiplied by 2 (in 1C cells) or 1 (in M2 cells). In the (B6 3 Spret)

cross, we observed a strong negative correlation between chromosome size and crossover density in 1C cells (Figure S4A,

r = –0.66, p = 0.002). Consistent with previous findings (Lange et al., 2016), this correlation is only partly explained by Spo11 oligo-

nucleotide complex density (r = –0.46, p < 0.05), suggesting that smaller chromosomes sustain more DSBs and those DSBs aremore

likely to give rise to crossovers. This negative correlation is even stronger in M2 cells (Figure S4B, r = –0.83, p = 1e-5). These obser-

vations suggest that smaller chromosomes are hotter for crossovers. The same trend is observed in the (B6 3 Cast) cross. 1C cells

had an average of 0.62 and 0.58 crossovers per chromosome per cell for inter- and intra-specific crosses, respectively, whileM2 cells

had an average of 0.92 and 1.03 per chromosome per cell (Figures S4C–S4F). The crossover rate in interspecific M2 cells is only 9%

lower than crossover counts measured by Mlh1 foci in 4C spermatocytes in B6 inbred mice (Froenicke et al., 2002), despite a

sequence divergence of 2%. The crossover rate in 1C cells is 45% lower than observed in single human sperm sequencing (Lu

et al., 2012; Wang et al., 2012). The latter difference could largely be due to the telocentric nature of mouse chromosomes. Although

the interspecific (B6 3 Spret) cross has higher average number of crossovers detected in 1Cs compared to the (B6 3 Cast) cross

(p = 7e-26, Mann-Whitney test), the average number of crossovers in M2 cells are lower (p = 2e-10). We note that the proportion

of M2 cells that segregated all 19 autosomes reductionally that have a crossover on every chromosome is higher for the (B6 3

Cast) cross (60/91 of 66%) than the (B6 3 Spret) cross (41/80 or 51%) (p = 0.06, Fisher’s exact test), such that it could potentially

contribute to the infertility of the latter.

To examine crossover interference, we took chromosomeswith at least two crossovers and plotted the distance between adjacent

crossovers, and compared this distribution to expectation based on random simulation (Figure S4G). The median observed distance

between crossovers was 82 Mb for (B6 3 Spret) and 97 Mb for (B6 3 Cast); both are much larger than the expectation of 39 and

42Mb (p = 1e-267 and p < 2e-308, respectively, Mann-Whitney test). This is consistent with the repulsion of crossovers in close prox-

imity. Note that crossover interference is stronger in the (B63Cast) than the (B63 Spret) cross, with longer distances between adja-

cent crossovers (p = 5e-91).

We also analyzed the distribution of uniparental chromosomes (i.e., no observed crossovers) in each single cell (Figure S4H; Table

S4) and for each chromosome (Figure S4I) in (B6 3 Spret) cross (the same trends hold for the (B6 3 Cast) cross. Although shorter

chromosomes exhibit elevated crossover rates when normalized by length, the rate of uniparental chromosomes (collapsed across

all classes of cells) still negatively correlated with chromosome size (Figure S4I; r = –0.91, p = 4.6e-8).

While we have shown that M2 cells are strongly biased toward either equational or reductional segregation of their chromosomes,

we also observed hundreds of sporadic equational segregation events among cells that have at least 15 chromosomes with reduc-

tional segregation. This phenomenon has previously been observed and termed as ‘‘reverse segregation’’ (Ottolini et al., 2015). In

Figure S4J, we show chromosome distribution of these reverse segregation events. Note that although the rate of reverse segrega-

tion is significantly higher in the (B6 3 Spret) cross (mean = 1.1) than the (B6 3 Cast) cross (mean = 0.2, p = 2e-14, Mann-Whitney

test), chromosomes 7 and 11 have the highest rates of reverse segregation in both crosses.

We then examined the normalized proportion of reads per cell that map to the mitochondrial genome (Figure S4K). The 1C cells

exhibit a bimodal distribution in terms of the ‘‘copy number’’ of mitochondria DNA, an observation for which we lack a satisfactory

explanation. We observed a modest negative correlation between the mitochondrial read proportion and the number of crossovers

(rho = –0.11, p = 3e-6). Interestingly, although of limited number, M2 cells that segregated at least 15 of their chromosomes either

equationally versus reductionally had very different distributions of mitochondrial read proportions. Consistent with this, the mito-

chondrial read proportion positively correlated with the number of reductionally segregated chromosomes in M2 cells (r = 0.18,

p = 0.005). Note that we are not able to evaluate this in the (B63 Cast) cross because more than 90% of the single cells sequenced

do not have any reads mapping to the mitochondrial genome. It is possible that the different methods used for nuclei isolation from

the testes (B6 3 Cast) versus the epididymis (B6 3 Spret), coupled with pre-sorting of the nuclei from the testes, fractionated the

mitochondria away from the bulk nuclei.

Distribution of meiotic crossover events in relation to genomic features

Genomic Features Regulating Crossover Hotness. To evaluate the distribution of crossovers at a finer scale, we collapsed all cross-

over events to generate ‘‘hotness maps’’ along each murine chromosome. We first compared these maps with the single-stranded

DNA sequencing (SSDS) map (Brick et al., 2018; Smagulova et al., 2011, 2016) and the Spo11 oligonucleotide-complex map (Lange

et al., 2016), which identify meiotic DSB hotspots at the highest resolution. DSB maps in the B6 strain from these two mapping

methods strongly correlate with each other along 100 kb windows (rho = 0.87, p < 2e-308). Although our 1C and M2 cell crossover

pileups correlate with one another (rho = 0.67 for (B63 Spret) cross and rho = 0.55 for (B63 Cast) cross, p < 2e-308 for both), both

deviate from the DSB maps. Of relevance, the PRDM9 gene, a major player for hotspot specification, has evolved to bind different

motifs between divergedmouse strains, even between subspecies ofmice (Davies et al., 2016; Gregorova et al., 2018).We found that

in the intraspecific (B63Cast) cross, crossover hotness correlates better with DSB hot domainsmapped in the Castmale than the B6

male (rho = 0.28 and 0.12, p < 2e-308 and p = 1e-83, respectively), possibly as a result of Cast PRDM9 allele being semi-dominant in

the F1 hybrid. The correlation is stronger with DSB hot domains mapped in (B6 3 Cast) F1 animals (rho = 0.3, p < 2e-308). For the

(B6 3 Spret) cross, the erosion of PRDM9 consensus binding site results in four types of DSB hotspots defined by the Spo11 oligo-

nucleotide-complexmap: those that are conserved between B6 and Spret, termed as ‘‘symmetric’’ hotspots, those that are only pre-

sent in B6 or Spret, termed as ‘‘asymmetric’’ hotspots, and those do not contain a PRDM9 binding site in either species. All four types
e2 Molecular Cell 76, 676–690.e1–e10, November 21, 2019



of DSB hot domains correlate poorly with crossovers from the (B63 Spret) cross (rho = 0.13, p = 4e-87 for using all Spo11 hotspots

mapped in B6; rho = 0.11, p = 3e-63 if we only use ‘‘symmetric hotspots’’). One possibility is that the DSB sites in the (B6 3 Spret)

cross are strongly dominated by the Spret PRDM9 allele, such that the DSB hotspots mapped in the B6 strain background do not

predict sites of crossovers.

Only 10%ofmeiotic-specific DSBs are repaired as crossovers. We next looked at what factors beyond Spo11 breaks contribute to

crossover formation by building a linear model with BayesianModel Averaging (BMA) (Clyde et al., 2011). As applied here, BMA takes

aweighted average of themore than 15,000 variable selectionmodels explored andweights them by the posterior probability of each

model, which accounts for uncertainty in model selection, unlike some other variable selection techniques like Lasso regression. We

quantified a marginal inclusion probability (MIP) for �80 potentially explanatory variables. Features that are known to be relevant to

meiotic crossovers such as Spo11 break sites, GC content, etc. are included in almost all the models with high probabilities (Figures

6A and S5); for example, regions with high GC content are hotter for crossover formation, We also found a few more features that

have not previously been implicated in meiotic crossovers, such as specific families of repeats and chromatin marks, and particularly

early replication domains. Correlation matrices between crossover hotness and all the features are plotted in Figure S6 for each

crosses. Features used and summaries of the simple linear models and BMA are included in Table S7. The breakpoint resolution (me-

dian �150 kb for (B6 3 Spret) and �250 kb for (B6 3 Cast); Figure 6B) is on par with previous efforts to map meiotic crossovers by

single cell sequencing (150 - 500 kb) (Lu et al., 2012; Ottolini et al., 2015; Wang et al., 2012); however, the greater library complexity

afforded by sci-L3-WGS enabled us to achieve this with a much lower sequencing depth.

Many of the features that correlate with crossover formation are consistent between the (B63 Spret) and (B63 Cast) crosses, but

some are not. For example, the positional biases of crossover formation appear to be different. In 1C cells of both crosses, as well as

inM2 cells in the (B63Cast) cross, crossovers are underrepresented within 10Mb from the centromere and rather tend to occur near

the telomere in the rightmost positional ‘quartile’. However, in M2 cells in the (B6 3 Spret) cross, crossovers are underrepresented

near the centromere as well as near the telomere, and rather tend to occur in the middle quartiles (Figure S6). This trend holds in the

linear models where we account for contributions from all other features.

The position of a crossover can greatly affect the amount of tension enforced between chromosome homologs, which in turn

facilitates proper chromosome segregation. We therefore explored this in more detail by taking only the rightmost crossover for

each chromosome in each cell and examining its position along the chromosome arm in each cross (de Boer et al., 2015). Accounting

for inter-chromosome variability with a linear mixed effect model, we estimate that the positions of the rightmost crossovers in the

(B6 3 Spret) cross are on average 1.6 Mb more centromere-proximal than those in the (B6 3 Cast) cross in 1C cells (Figure S7A,

p = 1e-13, F test), but are 5.5 Mb more centromere-proximal in the M2 cells (Figure 6C, p = 2.2e-15). Note that the rightmost cross-

overs in the M2 cells tend to be more centromere-proximal than those in the 1C cells in both crosses, but to a greater extent in the

(B6 3 Spret) cross (Figure 6D) than in the (B6 3 Cast) cross (Figure S7B). These differences suggest that a subset of M2 cells in the

(B63Spret) cross whose crossovers occur too close to the centromeremay fail to mature into 1C cells, possibly due to defects inMII

segregation. Similarly, although of limited number of events, we have also compared the positions of crossovers in M2 cells that have

biased chromosome segregation and found that in both crosses, crossovers in cells with biased equational segregation are more

centromere-distal than those in cells with biased reductional segregation, with differences of 13.7 Mb in the (B6 3 Cast) cross

(p = 4e-15) and of 8.7 Mb in the (B63 Spret) cross (p = 6e-14) (Figures S7C and S7D). This suggests possible MI segregation defects

in cells that have crossovers too close to the telomere. We propose a tentative model to explain this observation in Figure S7E.

Cell Heterogeneity in Terms of Crossover Break Points. Although 1C and M2 cells appear broadly similar in the crossover pileups,

we wondered whether there was any structure to the features that influence crossover distributions in subsets of single cells. To

explore this, we aggregated crossover-related information for each single cell for each of 78 features (See also ‘‘Bioinformatic

and Statistical Analyses’’ section below). We then used principal component analysis (PCA) on a matrix with each row as one single

cell and each column as one summarized feature value. For the (B63 Spret) cross, the first two principal components (PCs) capture

26% of the variance, and for the (B63 Cast) cross, PC1 and PC3 capture 17% of the variance. In both crosses, the 1C and M2 cells

are separated into two clusters by these PCs (Figures S7F and S7G). The chromosomal distribution of crossovers, uniparental chro-

mosomes and positions of crossovers in chromosome quartiles are the features that appear to drive the separation of 1C and

M2 cells.

Predicting Crossover Tracts from Genomic Features. Finally, we sought to exploit the large number of events observed here to

construct a predictive model of crossover locations. Specifically, we built a linear model of binary response with 1 being crossover

tracts and 0 being a random tract sampled from the genome from the same tract length distribution (details in ‘‘Bioinformatic and

Statistical Analyses’’ section below). Using the same 76 features as in the BMA analyses, we can predict crossover tracts on

held-out data with an average Receiver Operator Curve (ROC) Area Under Curve (AUC) of 0.73 for (B63 Spret) cross. With a subset

of 25 variables of high inclusion probability (MIP > 0.5) identified by BMA, we achieve a similar average AUC of 0.72 (Figure 6E). Simi-

larly, for the (B63Cast) cross, we achieve an average AUCof 0.85 when all features or a subset of 25 features withMIP > 0.5 are used

(Figure 6F).

In sum, the improved genome coverage enabled high-resolution mapping of crossover break points compared to other single-cell

sequencing methods, and the throughput for mapping a total of �87,000 crossovers allowed us to better characterize genomic and

epigenomic features associated with crossover hotness with pileup data (further discussion in ‘‘Crossover Hotness and Associated

(Epi)genomic Factors’’ section below).
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Speculations on the causes and consequences of reverse segregation

We have observed high incidence of reverse segregation, particularly in the interspecific (B63 Spret) cross. Below we speculate on:

1) what might cause premature centromeric cohesin separation, 2) whether one crossover is sufficient for proper reductional segre-

gation, and 3) what consequences equational segregation in MI may have.

First, it is possible that due to insufficient homolog pairing between B6 and Spret chromosomes, DSBs that should have been nor-

mally repaired off the homolog during meiosis are instead frequently repaired using sister chromatids as template. This could cause

disruption of cohesins (Storlazzi et al., 2008) and lead to premature centromere cohesin separation.

Second, the current model suggests that one inter-homolog crossover and proper sister chromatid cohesion are sufficient for

forming chiasmata (Figure S7H) despite initial insufficient homolog pairing in the interspecific cross. Once a crossover is successfully

formed, chromosome segregation should not be impaired. In our study, on the individual chromosome level, the large numbers of

equationally segregated chromosomes observed do have normal crossovers as evidenced by centromere-distal LOH, which could

indicate that defects in the initial homolog pairing impact the ultimate outcome. On the genome level, however, we cannot confidently

assess whether those cells with biased equational segregation have similar numbers of crossovers as their reductionally biased

counterparts, because we can detect all crossovers for chromosomes that segregate reductionally, but we can only detect cross-

overs in equationally segregated chromosomes when the two recombined chromatids segregate apart (Figures S2B, S2C, and

S7H, patterns 2 and 3). Assuming recombined chromatids are equally likely to segregate together or apart, the number of crossovers

is not smaller in those genome-level equational segregation cases, although we cannot exclude the possibility that segregation is

biased away from 50/50 due to unresolved recombination intermediates (Figure S7H, pattern 3).

Third, what are the consequences of these equationally segregated chromosomes? Do they return to mitosis, bearing extensive

LOH, or do they proceed toMII, and if so, contributing to forming 1C gametes? In yeast, a phenomenon called ‘‘return-to-growth’’ has

been characterized wherein cells that initiate the meiosis program can revert to normal mitotic divisions in the presence of proper

nutrients, resulting in large numbers of LOH events (Dayani et al., 2011). In human female meiosis, chromosomes with reverse segre-

gation proceed to MII, leading to one euploid oocyte and one euploid polar body 2, consistent with normal MII segregation; the au-

thors suggest that unresolved recombination intermediates may have both caused the reverse segregation in MI and facilitated

proper MII segregation by linking the otherwise unrelated homolog chromatids (Figure S7H, pattern 3) (Ottolini et al., 2015). Mlh1

is important in both mismatch repair (MMR) and for resolving Holliday junction intermediates in meiosis. Given the 2% sequence

divergence between B6 and Spret, it is possible that Mlh1 is limiting due to intensive MMR and there may not be enough Mlh1 for

resolving recombination intermediates. However, we emphasize that if recombined homolog chromatids co-segregate, this would

not lead to LOH (Figure S2C). Therefore, M2 cells with LOH and equational segregation cannot be explained by co-segregation of

unresolved intermediates.

Lastly, in Figure S7H, we also show possible contributions to forming gametes from chromosomes without any inter-homolog

crossover, probably due to insufficient homolog pairing, because one of the patterns (pattern 4) is not distinguishable from cells

that have a crossover but co-segregate recombined chromatids (pattern 3). However, if these cells without crossover contribute

significantly to the 1C cells, we should observe a higher number of crossover-free chromosomes among the 1C cells. Of the 1C cells

we observed in both crosses, the number of chromosomes with and without crossovers is roughly 50-50, indicating that they pre-

dominantly derive from some combination of patterns 1-3 in Figure S7H, and 2C cells without inter-homolog crossovers (patterns

4 and 5) do not substantially contribute to 1C cells that successfully complete MII.

Crossover hotness and associated (epi)genomic factors

Crossover hotness is a continuum and shaped by many factors. Crossovers in the (B6 3 Cast) cross correlate more strongly with

meiotic DSB hotspots mapped in the F1 cross than in individual maps for the two parental strains, which is expected based on

the previous finding that novel meiotic hotspots can form in F1 hybrids (Smagulova et al., 2016). In the (B63 Spret) cross, crossovers

are weakly but positively correlated with Spo11 breaks. Note that the Spo11 map only accounts for the PRDM9 sites bound by

PRDM9 protein of the B6 allele, and it is likely that the Spret copy of PRDM9 binds different sites and creates new meiotic DSB hot-

spots, not accounted for in our analyses. Genomic features that we observe to be positively correlated with meiotic crossovers

include GC-rich regions (also the case in yeast meiosis (Petes, 2001; Petes and Merker, 2002)), CNV gains between the strains (Lilue

et al., 2018), gene bodies, pseudogenic transcripts, CTCF binding sites, replication domains (Marchal et al., 2018), DNA transposons,

satellite DNA and a subset of histonemodifications including H3K4me1, H3K27me3 and H3K36me3 (Mu et al., 2017). Intriguingly, the

binding sites of Dmrt6, involved in regulating the switch from mitotic to meiotic divisions in male germ cells (Zhang et al., 2014) are

strongly correlated with meiotic crossover hotness. Genomic features that are notably negatively correlated with meiotic crossovers

include 30 UTRs, LINEs, and low complexity DNA. Unlike in yeast, where rDNA is extremely cold for meiotic crossovers (Petes and

Botstein, 1977), mouse rDNA does not appear to suppress crossovers. With these genomic features, we are able to distinguish real

meiotic crossover initiation sites from randomly sampled tracts in the mouse genome, with 0.73 and 0.85 accuracy in (B6 3 Spret)

and (B63 Cast), respectively, and the 0.85 prediction accuracy in the (B63 Cast) cross holds with a subset of 25 genome features.

We emphasize that although the various features behave largely consistently between modeling approaches, we cannot assign any

causality without further experiments.
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Sci-L3 Method
Methods and molecular design of sci-L3-WGS and sci-L3-target-seq

Single Cell Preparation and Nucleosome Depletion. Cell suspension is prepared by trypsinizing from a Petri dish or homogenizing

from tissues. Male F1 mice were euthanized by CO2 followed by cervical dislocation according to University of Washington IACUC

approved protocols. For isolation of male germ cells, we dissected the epididymis by slicing the tubes within and incubating the tis-

sue in 1ml of 1xPBS supplemented with 10%FBS at room temperature for 15min. After incubation the cell suspension was collected

by pipetting. Cells isolated from the epididymis were used for experiments of the (B6 3 Spret) cross and also as a source of mature

sperm (‘‘barcode group 3’’) in the (B63 Cast) cross. For isolation of nuclei from whole testis as an enrichment method for 2C cells for

the (B63Cast) cross, we first crosslinked testicular cells with 1% formaldehyde and extracted nuclei using hypotonic buffer. We then

FACS-sorted 1C and 2C nuclei by DNA content primarily based onDAPI signal. Cultured human andmouse cells are pelleted at 550 g

for 5 min at 4�C and male germ cells are pelleted at 2400 g for 10 min at 4�C.
Nucleosome depletion largely follows xSDSmethods in sci-DNA-seq (Vitak et al., 2017) except that the lysis buffer ismodified to be

compatible with downstream LIANTI protocol (Chen et al., 2017). Cells are crosslinked in 10 mL DMEM complete media with 406 mL

37% formaldehyde (final conc. 1.5%) at r.t. for 10 min (gently inverting the tubes). We then add 800 mL 2.5 MGlycine and incubate on

ice for 5 min. Cells are pelleted and washed with 1 mL lysis buffer (60 mM Tris-Ac pH 8.3, 2 mM EDTA pH 8.0, 15 mMDTT). The pellet

is resuspended in 1 mL lysis buffer with 0.1% IGEPAL (I8896, SIGMA) and incubated on ice for 20 min. Nuclei are then pelleted,

washed with 1xNEBuffer2.1, and resuspended in 800 mL 1xNEBuffer2.1 with 0.3% SDS for nucleosome depletion at 42�C (vigorous

shaking for 30 min, 500 rpm). We then add 180uL 10% Triton-X and vigorous shaking for 30 min at 42�C (500 rpm). Permeabilized

nuclei are then washed in 1mL lysis buffer twice and resuspended in lysis buffer at 20,000 nuclei per mL.

Transposome Design and Assembly. Transposon DNA oligo is synthesized with both 50 of the two strands phosphorylated, one

required for Tn5 insertion (50/Phos/CTGTCTCTTATACACATCT, IDT, PAGE purification) similar as in LIANTI and Nextera, the other

required for ligation (50/Phos/GTCTTG XXXXXXXX [1st round barcode] AGATGTGTATAAGAG

ACAG, IDT, standard desalting). After annealing 1:1 with gradual cooling (95�C 5min,�0.1�C/cycle, 9 s/cycle, 700 cycles to 25�C)
in annealing buffer (10mM Tris-HCl pH 8.0, 50mM NaCl, 1mM EDTA, pH 8.0), Tn5 duplex with 50 overhang is diluted to 1.5 mM. We

then add 7.2 mL storage buffer (1xTE with 50%Glycerol) to 12 mL�1 mMTn5 transposase (Lucigen, TNP92110) and incubate 0.79 mL

diluted transposase with 0.4 mL 1.5 mMTn5 duplex at r.t. for 30min. The transposome dimerize to a final concentration of 0.2 mM. The

transposome complex can be stably stored at �20�C for up to one year. We set up 24 reactions for barcoding 24 wells in the first

round but more wells could be desirable depending the application. For each new biological application, we first further dilute the

transposome to 0.1 mM for a test experiment. The number of unique reads and library complexity is less optimal (Figure S1) but usable

for mapping at low resolution.

In Figure 2, we showmolecular structures of sci-L3-WGS at each step. In commercial Nextera library preparation, one loses at least

half of the sequenceable DNA material due to: 1) Tn5 insertion introduces symmetric transposon sequence at the two ends of frag-

mented genomic DNA, which can result in formation of hairpin loop when denatured and prevent PCR amplification; and 2) if the two

ends are tagmented with both i5 or i7 with 50% chance, the molecule cannot be sequenced. One key advantage of LIANTI over

Nextera-based library preparation, is that the looped Tn5 design breaks the symmetry introduced by transposome dimer and facil-

itates reverse transcription (RT) by using an intramolecular RT primer, also characteristic of the looped transposon. However, looped

transposon is not compatible with more than two rounds of barcoding, which limits throughput and significantly increase library cost

(see Table S1 for comparison). In the changes we made for sci-L3-WGS, we maintain advantages brought by looped Tn5 during the

ligation step.

Tagmentation (first-round barcodes) and ligation (second-round barcodes)

We then distribute 1.5 mL of nuclei at 20,000/mL concentration into each well in a lo-bind 96-well plate, add 6.5 mL H2O and 0.7 mL

50 mMMgCl2 (final conc. of 3.24 mM accounting for the EDTA in the lysis buffer). The 1.2 mL transposome prepared above is added

into each well and the plate is then incubated at 55�C for 20min (thermomixer is recommended but not required). We then add 5 mL of

stop solution (40 mMEDTA and 1mM spermidine) and pool nuclei in a trough. An additional 1 mL of lysis buffer is added to the nuclei

suspension before pelleting. After carefully removing the supernatant, we resuspend the nuclei in 312 mL resuspension buffer (24 mL

10mM dNTP, 48 mL 10x tagmentation buffer [50 mMMgCl2, 100 mM Tris-HCl pH 8.0], 96 mL H2O, 144 mL lysis buffer), and distribute

4.7 mL nuclei mix into each well of a new lo-bind 96-well plate. Hairpin ligation duplex (1. CAAGAC 2. Y’Y’Y’Y’Y’Y’Y’ [reverse com-

plement of 2nd round barcode] 3. CAGGAGCGAGCTGCATCCC 4. AATTTAATACGACTCACTATA 5. GGGATGCAGCTCGCTCCTG 6.

YYYYYYY [2nd round barcode]) is pre-annealed similarly as the Tn5 transposon duplex and diluted to 1.5 mM. Note that the ligation

duplex contains five elements: 1) reverse complement of ligation adaptor on Tn5; 2) reverse complement of 2nd round barcode; 3)

reverse complement of second-strand synthesis (SSS) primer; 4) T7 promoter, note that this is the loop region of the hairpin; 5) sec-

ond-strand synthesis (SSS) primer region starting with GGG for enhancing T7 transcription (‘‘sp2’’ in Figure 2B); 6) 2nd round barcode

(‘‘bc2’’ in Figure 2B).We add 0.8 mL of these duplex to each of the 64wells with nuclei suspension and add 1.18 mL ligation mix (0.6 mL

10x NEB T4 ligase buffer, 0.48 mL PEG-4000, 0.1uL T4 DNA ligase [Thermo EL0011]) into each well and incubate at 20�C for 30 min.

Note that after ligation, the looped structure mimics that of LIANTI and facilitates efficiency at the RT step (discussed below), and that

both rounds of barcodes are present at the 30 of the T7 promoter and thus will be included in the amplifiedmolecule. Ligation reaction

is stopped by adding 4 mL stop solution. Cells are then pooled in a new trough (�630 mL), stained with DAPI at a final conc. of 5 mg/mL

and sorted 100-300 into each new well with 3 mL lysis buffer added prior to cell sorting. Note that each sorting event with FACS is
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associated with �3-5 nL FACS buffer depending on the size of the nozzle, we recommend keeping the total volume of liquid added

into each well < 1 mL to keep the salt concentration low.

Cell lysis, gap extension and linear amplification by in vitro transcription

We then proceed with a total of 3.5-4 mL sorted nuclei in each well for cell lysis by incubating at 75�C for 45 min, cooling to 4�C and

treating with freshly diluted QIAGEN Protease (final conc. 2mg/mL) at 55C for 8 hr. Protease is then heat-inactivated by incubating at

75�C for 30 min. Cell lysate can be stored at �80�C. We recommend processing no more than 32 wells of samples (�9600 single

cells) for each experiment because subsequent amplification step involves RNA and is time-sensitive. For gap extension (Figure 2C),

polymerase with strand displacement activity is used by adding amixture of 2 mL H2O, 0.7 mL 10x tagmentation buffer, 0.35 mL 10mM

dNTP and 0.35 mL Bst WarmStart 2.0 polymerase with strand displacement activity, and incubate at 68�C for 5 min. Note that if liga-

tion is successful on both ends, the duplex is symmetric with T7 promoter on both sides, but if ligation is only successful on one end,

the region in the dashed box is missing on one side. Inter-molecular ligation is generally inefficient. Although we have included pre-

annealed hairpin loop to minimize the necessity of inter-molecular ligation, two molecules (instead of three without the hairpin loop)

still need to find each other. If the ligation efficiency is 50%, having ligation on both ends has 25% rate, but having ligation on either

end has 75% rate. Later in the RT step, we show that successful ligation is required for only one end. After gap extension, a 20 mL T7

in vitro transcription system is assembled by adding 2 mL H2O, 2 mL T7 Pol mix and 10 mL rNMP mix (NEB, HiScribe T7 Quick High

Yield RNA Synthesis Kit). The mixture is incubated at 37�C for 10-16 hr.

RNA purification, RT and SSS (or targeted sequencing)

Transcription is terminated by adding 2.2 mL 0.5M EDTA. Amplified RNA molecules are then purified with RCC-5 (Zymo Research,

R1016) and eluted with 18 mL 0.1x TE. A 30 mL RT system is assembled by first adding 0.6 mL RNA RT primer (rArGrArUrGrUrGrUr

ArUrArArGrArGrArCrArG, IDT), 2 mL 10 mM dNTP and 0.5 mL SUPERase, In RNase Inhibitor (20 U/mL, Thermo Fisher AM2696). We

then incubate at 70�C for 1 min and 90�C for 20 s for denaturing and removing secondary structures and sudden cool on ice.

SuperScript IV Reverse Transcriptase (SSIV, Thermo Fisher 18090050) is used for RT with 6 mL 5x RT buffer, 1.5 mL 0.1M DTT,

1 mL SUPERase, In and 1 mL SSIV. The RT reaction is incubated at 55�C for 15 min, 60�C for 10 min, 65�C for 12 min, 70�C for

8 min, 75�C for 5 min, and 80�C for 10 min. The reaction is cooled to r.t. before adding 0.5 mL RNaseH (NEB) and 0.3 mL RNaseA

(Life Technologies, AM2270) and incubating at 37�C for 30 min. Note that Figure 2E depicts two scenarios during the RT step: 1)

if both ends have successful ligation, RT is likely primed by fold-back loop as in LIANTI; 2) if only one end has successful ligation,

RT is likely primed by the RNA RT primer added before the denaturing step. Excessive RNA primers and RNA transcripts are

degraded after cDNA synthesis. Lastly, we synthesize the second strand with Q5 DNA polymerase by adding 27 mL H2O, 20 mL

5x Q5 buffer, 20 mL Q5 GC enhancer, 1 mL Q5 polymerase and 1 mL SSS primer (NNNN [UMI] ZZZZZZ [3rd round barcode] GGGATG

CAGCTCGCTCCTG, IDT, standard desalting). Resulting double stranded DNA can be purified with DCC-5 (Zymo Research, D4014)

and proceedwith library preparation kit such as NEBNext Ultra II with theminimal 3 cycles of PCR for adding the sequencing adaptor.

It is worth noting that the SSS step can be easily modified to enable targeted sequencing by using a single cell barcode primer with

P5 end (AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC

GCTCTTCCGATCT NNNNNNN ZZZZZZ [3rd round barcode] GGGATGCAGCTCGCTCCTG) together with a targeting primer for

one region in the genome (Figure 1B). For example, in applications where one integrates lentivirus-based CRISPR library (Shalem

et al., 2014), the guide RNA sequence in each single cell could be read off using P7 end with lentivirus-integrated CRISPR library

primer, CAAGCAGAAGACGGCATACGAGAT TCGCCTTG [index 1] GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGAC

TCGGTGCCACTTTT TCAA), thus bypassing the need to sequence the whole genome and enrich for a specific region of interest.

In this case, the library preparation step can be omitted and replaced by gel or bead purification to remove primer dimers.

Methods and molecular design of sci-L3-RNA/DNA co-assay

Single Cell Preparation and Nucleosome Depletion. Cell suspensions are prepared with the same protocol as in sci-L3-WGS other

than differences indicated below. HEK293T, BJ-5ta and 3T3 cells were trypsinized from a Petri dish and fixed with 2%PFA in 1x PBS

at room temperature for 10 min at 1M/mL cell concentration. Subsequent quenching (with Glycine), washing, nuclei isolation (with

0.1% IGEPAL), nucleosome depletion (xSDS method) steps are identical with sci-L3-WGS except that we add 1% Superase-In to

all the lysis buffer and 1xNEBuffer2.1. Nuclei are resuspended in lysis buffer with 1% Superase-In at 20,000 nuclei per mL.

Transposome and Reverse Transcription (RT) Primer Design. For the single cell genome amplification component, transposome

design and assembly are identical to sci-L3-WGS.

For single cell transcriptome profiling component, reverse transcription primers share similar structure with sci-RNA-seq in (Cao

et al., 2017; Cusanovich et al., 2015; Mulqueen et al., 2018; Ramani et al., 2017; Vitak et al., 2017) for the reverse transcription aspect,

i.e., polyT priming part of the oligo, but contain a different barcode structure and landing pad for the subsequent ligation step (/5Phos/

GTCTTG [same landing pad sequence as in sci-L3-WGS] NNNNNN [UMI1 for tagging unique transcripts] X’X’X’X’X’X’X’X’ [1st round

barcode for transcriptome, which are different sequences from Tn5 transposon barcodes] TTTTTTTTTTTTTTTTTTTTTT TTT

TTTTTVN, IDT, standard desalting).

RTandTagmentation (First-RoundBarcodes), Ligation (Second-RoundBarcodes), FACS, andCell Lysis.We thendistribute 1.5mLof

nuclei at 20,000/mLconcentration into eachwell in a lo-bind96-well plate, add0.2mLH2O,0.3mL50mMMgCl2 (toneutralizeEDTA in the

lysis buffer), 0.25 mL 10mMdNTP and1 mL 25 mMRTprimer described above to prepare for the RT step. The nucleimixture is then incu-

bated at 55�C for 5min to remove secondary structures andquickly quench on ice.We then add1 mL 5xRTbuffer, 0.03 mL 100mMDTT

(note that there isDTT fromlysisbuffer, final conc.5mM),0.25mLSSIV,0.25mLRNaseOUT(ThermoFisherCat.No.10777019), incubate
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for RT reaction at 25�C1min, 37�C1min, 42�C 1min, 50�C 1min, 55�C 15min. Then add 0.4 mLMgCl2 and 3.52 mLH2O and the 1.2 mL

transposome prepared above into each well. All subsequent steps until after cell lysis are identical to sci-L3-WGS.

Gap Extension and Linear Amplification by In Vitro Transcription. We use random heptamer for gap extension with partial NEBNext

Read 1 primer as the 50 overhang (CACGACGCTCTTCCGATCT NNNNNNN). We add 1 mL of 20 mM oligo, incubate at 95�C for 3 min

to denature the DNA, and gradually cool to r.t. (�5 min) for the oligos to anneal. We then add 2 mL H2O, 0.8 mL 10x NEBuffer2, 0.4 mL

10mM dNTP, 0.4 mL Klenow Fragment (30/50 exo-, NEB M0212S) and incubate at 30�C for 8 min and 75�C for 10 min. After gap

extension, a 20 mL T7 in vitro transcription system is assembled by the same sci-L3-WGS protocol.

RNA Purification, RT, and SSS. All the steps are identical to sci-L3-WGS except for different oligo sequences. At the RT step after

IVT, instead using 0.6 mL RNA RT primer, we use 0.6 mL NEBNext Read 1 primer (AATGATACGGCGACCACCG AGATCTACA

CTCTTTCCCTACACGACGCTCTTCCGATCT, P5 end of Illumina sequencing, IDT). For SSS primer, we use AAGCAGAAGACGGC

ATACGAGAT [P7 end] NNNN [UMI2] Z’Z’Z’Z’Z’Z’ [3rd round barcode] CGTCTCTAC GGGATGCAGCTCGCTCCTG to add the

sequencing adaptor. Note that the resulting double stranded DNA now contains both the P5 and P7 end for Illumina sequencing

and can be purified with 1.1x AmpureXP beads and proceed with sequencing. The library preparation step and the minimal 3 cycles

of PCR in sci-L3-WGS for adding the sequencing adaptor are unnecessary for the co-assay.

Setup of sci-L3-WGS experiment in two crosses
(B6 3 Spret) cross

Wepooled cells isolated from 6 and 3 epididymides from (B63 Spret) F1 males aged 70 days and 88 days, respectively, in two sepa-

rate experiments, and fixedwith 1% formaldehyde. For each experiment, after nucleosome depletion, we distributed 30,000 cells per

well and performed in situ indexed Tn5 insertion across 24 wells to add the first-round barcodes. We then pooled all cells and redis-

tributed these to 64 wells to add the second-round barcodes and T7 promoter by ligation. After again pooling all cells, we split the cell

mixture 1:6, FACS-sorted the majority of cells (6/7), and diluted the rest (1/7). The resulting wells contained 100 to 360 cells per well

with an estimated collision rate of 4%–11%.

(B6 3 Cast) cross

From 6 testes, we recovered �12M 1C round spermatids and �0.5M 2C cells. However, due to the > 20-fold higher number of 1C

cells, we still found many 1C cells in the population sorted for 2C cells (Figure S3F). In one of the sci-L3-WGS experiments where we

tried to enrich for 2C cells, we estimate that we tagmented�160k sperm from the epididymis,�160k 1C round spermatids and�70k

2C cells, and further enriched for 2C cells during the FACS step of sci-L3-WGS (Figure S3G). However, despite two rounds of enrich-

ment, 1C cells still dominated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatic and statistical analyses
Read processing, alignment and SNV calling

Base calls were converted to fastq file by bcl2fastq with 1 mismatch allowed for errors in the index. We then used customized shell

script ‘‘sci_lianti_v2.sh’’ for de-multiplexing (python scripts and the R Markdown file can be separately downloaded from the ‘‘inst’’

folder of the R package; the R package containing intermediate data files for generating all the main and supplemental figures can be

downloaded and installed via the following link: https://github.com/Yue-Jiang/sciliantifig), which calls python scripts or NGS tools for

the following steps: 1) order read pairs such that all single-cell combinatorial barcodes are in read 1 (R1); 2) de-multiplex 3rd round

(SSS, 6nt, no error allowed) barcodes and attach both the barcodes and UMI for transcripts to the read names, and split library by 3rd

round barcodes. Note that all subsequent steps are done in parallel for individual libraries split up by 3rd round barcodes, which

contain 100-300 single cells; 3) using cutadapt to split 1st (Tn5, 8nt, 1 error allowed) and 2nd rounds (ligation, 7nt, 1 error allowed)

of barcodes in R1, errors being calculated by Levenshtein distance, and attach both rounds of barcodes to the read names. This

step is done in paired-end mode, i.e., if R1 does not have the correct barcode and spacer structure, the paired read 2 (R2) is dis-

carded; 4) using cutadapt to clean up R2; 5) align in paired-end mode to hg19 or mm10 genome with bwa mem (Li and Durbin,

2009). For experiments where we assess barcode collision, we use concatenated reference of hg19 and mm10 and use uniquely

aligned reads to determine relative mapping rate to human or mouse genomes; 6) split bam files into single cell bam files using

1st and 2nd rounds of barcodes attached in the read name; 7) convert bam file to bed files with bedtools (Quinlan and Hall, 2010),

and determine unique insertion sites if either R1 or R2 shares the same end points. Unique Tn5 insertion site is defined as fragments

where both ends of the read pair need to be different; 8) using the ‘‘pileup’’ function in the ‘‘lianti’’ package (https://github.com/lh3/

lianti/blob/master/pileup.c) (Chen et al., 2017) to call variants in a allele-awaremode. Note that we include the combined bulk bam file

(generated by samtools merge (Chen et al., 2017; Li and Durbin, 2009) of all the �6900 single cells, more than 30x) with each single

cell bam file at this step such that the threshold of depth at each SNP location only needs to be exceeded in the bulk file for a SNP call

to be included in the final vcf. file, therefore raw counts of the REF and ALT alleles are included in the single cell column as long as the

variant is present as a heterozygous SNP in the bulk file. This circumvents the problem of high false negative rate due to low-depth

sequencing in single cells by converting the de novoSNP calling question to a genotyping question; 9) annotate SNV called in terms of

SNP quality in each single cell by the reference SNP vcf. file for Spret (SPRET_EiJ.mgp.v5.snps.dbSNP142.vcf.gz downloaded from

the Mouse Genome Project). The annotated SNP file is then used as input for subsequent crossover break point analyses.
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HMM for calling breakpoints

The genotype at a given SNP site is determined by comparing the number of reads supporting reference and alternative alleles. For

1C cells, the crossover position is determined by fitting a hidden Markov model with three states: reference, alternative and

heterozygous.

The transition matrix is specified as below:
From\To reference alternative heterozygous

reference 1 - transprob transprob * 0.3 transprob * 0.7

alternative transprob * 0.3 1 - transprob transprob * 0.7

heterozygous transprob * 0.5 transprob * 0.5 1 - transprob
We selected the parameters manually based on visual assessment of how well the HMM captures the apparent structure in the

data and that the results do not change appreciably when we vary the primary parameter by two orders of magnitude. The transprob

takes a very small number [1e-10 / (total number of SNPs on the given chromosome) in this case] to reflect the belief that state tran-

sitioning at any individual SNP site should be a very rare event. The further breakdown of transprob by fractions of 0.3 and 0.7 aims to

suppress rapid successive transitions of the form reference-alternative-reference or alternative-reference-alternative.

The emission matrix is specified as below:
State\Emission reference alternative

reference 0.9 0.1

alternative 0.1 0.9

heterozygous 0.5 0.5
After hidden states are called for each individual SNP, continuous long state blocks are called by removing state blocks shorter

than 50kb. The crossover position is then determined by where the long state block switches to a different state, where the break

point tract start position is the last SNP position of the previous state block and the tract end position is the first SNP position of

the following state block.

For M2 cells, an average allele frequency is first obtained by averaging over alleles within a window of 40 SNPs. The binned allele

frequencies are then used to infer underlying chromosome states from a hidden Markov model with single Gaussian probability

distributions.

The transition matrix is specified as below:
From\To reference alternative heterozygous

reference 1 - transprob 0 transprob

alternative 0 1 - transprob transprob

heterozygous transprob * 0.5 transprob * 0.5 1 - transprob
The emission matrix is specified as below:
State Emission

reference Normal(0.05, 0.1)

alternative Normal(0.5, 0.1)

heterozygous Normal(0.95, 0.1)
Continuous long state blocks are called by removing state blocks shorter than 50kb, then approximate break point position is

determined by where the long state blocks switches to a different state. The approximate break point position is then refined by a

likelihood ratio test aiming to find the likely break point within the upstream 20 and downstream 20 SNPs around the approximate

break point. For each SNP, the probability of observing the observed genotype is specified as:
State\Observed reference alternative

reference 1 – error_prob error_prob

alternative error_prob 1 – error_prob

heterozygous 0.5 0.5
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The error_prob is specified as 1e-3 which reflects the probability that a SNP is called incorrectly. For each SNP around the approx-

imate break point, the likelihood of it being the actual break point is calculated by the above distribution. All SNPs with likelihood

greater than 0.01 * maximum likelihood are considered to be within the break point range. The start of the break tract is determined

as the leftmost SNPwithin these SNPs, while the end of the break tract as the rightmost SNP. As in the 1C case, all M2 cell breakpoint

tracts are further manually examined to remove artifacts, e.g., where two immediately adjacent switches are present within 50kb. We

also performed the same breakpoint calling in mitotically dividing Patski cells. For M2 cells and Patski cells, we also manually exam-

ined breakpoint tracts by comparing bin sizes of 10 and 40 SNPs for cells with sparse genome coverage.

This step generate crossover break points summarized in Table S3. We postprocess to add the chromosome segregation infor-

mation based on whether the centromeric region, i.e., the starting region of each chromosome, is heterozygous (‘‘mt,’’ mitotic segre-

gation) or homozygous (‘‘me,’’ meiotic segregation).

Analyses of uniparental chromosomes

This step takes the rds file from the HMM output and generates uniparental chromosome calls summarized in Table S4 (See call_

uniparental_chrom.R code and annotations).

Analyses of meiotic crossover and chromosome segregation at the chromosomal level

This step generates chromosomal level characteristics of meiotic crossovers shown in Figure S4 (see sections Figure S4 in sci-L3-

WGS-figures.Rmd for R code and annotations).

Fitting a finite mixture model to the 2C cells in barcode group 2 in the (B6 3 Cast) cross

We fit the data to a mixture of three binomial distributions parameterized by p1, p2, p3, respectively, denoting their probabilities of

chromosomes segregating equationally. The relative contribution of these three binomial distributions are denoted by a length 3 vec-

tor theta. We estimate p1, p2, p3 as well as q by drawing samples from their posterior distributions using the R package rstan (https://

mc-stan.org/users/interfaces/rstan) with uniformDirichlet prior for q: q�Dir(K = 3, a = 1), and beta prior for p: p�Beta(a = 5, b = 5). For

further details on the model specification, see the Stan file mt_mixture_model.stan.

Preprocessing of datasets from other genomic studies for building linear models of crossover hotness and cell

clustering

We processed datasets from previous genomic studies and from downloaded mouse annotation file in gff3 format and

RepeatMasker from UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/hgTables) in terms of various genome elements.

Datasets based on mm9 are first lifted over to mm10. These datasets roughly fall into two categories: count data in bed format or

signal of various genetic or epigenetic marks in bedGraph format. For cell clustering and predictive modeling, crossover tracts

have different lengths. We normalize count data by dividing the total amount of sequences summed up from all the crossover in

each single cell for the cell clustering analyses and we normalize by dividing tract lengths plus 1 kb for each crossover tracts or

randomly sampled tracts such that extremely short tracts will not be overly weighted. Note that the median tract length is 150 kb

such that adding the 1 kb do not include much extra sequence. For dataset with continuous signal of various marks, we take the

average signal of marks that intersect with crossover or random tracts. For the crossover pileup dataset, since we used evenly-sized

100 kb windows, we did not normalize for tract lengths when using count data.

In addition to datasets mentioned in the Discussion section, where features have statistically significant association with crossover

occurrence, we also used the following datasets: 1) sequence divergence (Lilue et al., 2018); 2) ATAC-seq and H3K27ac mapped

from purified pachytene spermatocytes (Maezawa et al., 2018); 3) bisulfite sequencing from spermatogonia (Inoue et al., 2017); 4)

MNase-based nucleosome positioning in spermatocytes (Barral et al., 2017); 5) H4K5 and H4K8 butyrylation and acetylation in sper-

matocytes (Goudarzi et al., 2016); 6) H2A ubiquitination in spermatocytes (Hasegawa et al., 2015); 7). binding sites of CTCFL, the

testis-specific paralog of CTCF binding sites (Sleutels et al., 2012); 8) 5-hmC map in pachytene spermatocytes (Gan et al., 2013);

9) End-seq after etoposide treatment and CTCF and RAD21 ChIP-seq in activated B cells, TOP2A and TOP2B ChIP-seq in MEFs

(Canela et al., 2017); 10) Patski allelic ATAC-seq data (Bonora et al., 2018).

PCA for cell clustering, BMA for linear models of crossover hotness and random forest for predictive models of

crossover and random tracts

Principal component analysis is used to visualize in 2D the separation of 1C and M2 cells based on their break point features. We

aggregated crossover-related information for each single cell a total of 78 features corresponding to three types. As a first type,

we simply calculated the number of crossover or whole-chromosome LOH events for each chromosome in each cell. As a second

type, for features such as GC content, sequence divergence, intensity of chromatin marks, etc., we calculated median values for the

crossover breakpoints in each cell. As a third type, we calculated normalized counts of genomic elements such as genes bodies, long

terminal repeats (LTR), LINE elements that overlapped with crossover breakpoints in each cell.

Bayesian model averaging using the ‘‘bas’’ package (Clyde et al., 2011) is used to construct linear models predicting crossover

hotness (function bas.lm sampling 214 models with default settings), and variables important for predicting hotness are identified

based on their marginal inclusion probabilities. Random forests are trained to distinguish true crossover tracts from tracts randomly

sampled from the genome resembling the ‘‘null’’ distribution. Model accuracy is determined by full nested 5-fold cross validation,

with 5 external folds and 5 folds within each training set (see section called ‘‘Models’’ in sci-L3-WGS-figures.Rmd for R code and

annotations).
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To estimate the strain (or cell type) effect on the positioning of the rightmost crossovers along chromosomes, we use a linear mixed

effect model with fixed effect for strain (or cell type) and random intercept for chromosome to account for inter-chromosome vari-

ability (see section called ‘‘Karyotype Plots’’ in sci-L3-WGS-figures.Rmd for R code and annotations).

DATA AND CODE AVAILABILITY

Customized shell script ‘‘sci_lianti_v2.sh’’ for de-multiplexing (python scripts and the R Markdown file are uploaded separately as

‘‘sci_lianti_inst.tar.gz’’; the R package containing intermediate data files for generating all the main and supplemental figures can

be downloaded and installed via the following link: https://drive.google.com/file/d/19NFubouHrahZ8WoblL-tcDrrTlIZEpJh/view?

usp=sharing).

ADDITIONAL RESOURCES

Detailed Protocol
See Sci-L3 Method section above.
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